Contextual Sparsity with Correction for Efficient LLMs

Neural Information Processing Systems 

With the blossom of large language models (LLM), inference efficiency becomes increasingly important. Various approximate methods are proposed to reduce the cost at inference time. Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without significant performance degradation. However, after a comprehensive evaluation of contextual sparsity methods on various complex generation tasks, we find that although CS succeeds in prompt-understanding tasks, it significantly degrades the model performance for reasoning, deduction, and knowledge-based tasks. Despite the gap in end-to-end accuracy, we observed that sparse models and original models often share the general problem-solving logic and require only a few token corrections to recover the original model performance.