Cognitive Model Discovery via Disentangled RNNs

Neural Information Processing Systems 

Computational cognitive models are a fundamental tool in behavioral neuroscience. They embody in software precise hypotheses about the cognitive mechanisms underlying a particular behavior. Constructing these models is typically a difficult iterative process that requires both inspiration from the literature and the creativity of an individual researcher. Here, we adopt an alternative approach to learn parsimonious cognitive models directly from data. We fit behavior data using a recurrent neural network that is penalized for carrying excess information between timesteps, leading to sparse, interpretable representations and dynamics.