Review for NeurIPS paper: CLEARER: Multi-Scale Neural Architecture Search for Image Restoration

Neural Information Processing Systems 

Weaknesses: 1: Limited novelty: CLEARER uses multi-scale search space that consists of three types of modules: parallel module, transition module, and fusion module. All of these modules were originally proposed in [2, 1].The authors did not cite these works when mentioning the said modules throughout the paper. It seems inconvenient, as for every new task we would have a different architecture. However, they did not provide any analysis/insights of what makes it specific for image restoration. For instance, what makes it suitable for image denoising and image deraining, OR why it would not work for any other applications such as semantic segmentation?