Reward Propagation Using Graph Convolutional Networks
–Neural Information Processing Systems
Potential-based reward shaping provides an approach for designing good reward functions, with the purpose of speeding up learning. However, automatically finding potential functions for complex environments is a difficult problem (in fact, of the same difficulty as learning a value function from scratch). We propose a new framework for learning potential functions by leveraging ideas from graph representation learning. Our approach relies on Graph Convolutional Networks which we use as a key ingredient in combination with the probabilistic inference view of reinforcement learning. More precisely, we leverage Graph Convolutional Networks to perform message passing from rewarding states. The propagated messages can then be used as potential functions for reward shaping to accelerate learning. We verify empirically that our approach can achieve considerable improvements in both small and high-dimensional control problems.
Neural Information Processing Systems
May-30-2025, 09:15:35 GMT
- Country:
- North America
- Canada > Quebec (0.14)
- United States > California
- San Francisco County > San Francisco (0.14)
- North America
- Genre:
- Research Report (0.95)
- Industry:
- Leisure & Entertainment (0.46)