Half-Lives of EigenFlows for Spectral Clustering

Chennubhotla, Chakra, Jepson, Allan D.

Neural Information Processing Systems 

Using a Markov chain perspective of spectral clustering we present an algorithm to automatically find the number of stable clusters in a dataset. The Markov chain's behaviour is characterized by the spectral properties of the matrix of transition probabilities, from which we derive eigenflows along with their halflives. An eigenflow describes the flow of probability mass due to the Markov chain, and it is characterized by its eigenvalue, or equivalently, by the halflife of its decay as the Markov chain is iterated. A ideal stable cluster is one with zero eigenflow and infinite half-life. The key insight in this paper is that bottlenecks between weakly coupled clusters can be identified by computing the sensitivity of the eigenflow's halflife to variations in the edge weights.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found