Learning in Computer Vision and Image Understanding

Greenspan, Hayit

Neural Information Processing Systems 

There is an increasing interest in the area of Learning in Computer Vision and Image Understanding, both from researchers in the learning community and from researchers involved with the computer vision world. The field is characterized by a shift away from the classical, purely model-based, computer vision techniques, towards data-driven learning paradigms for solving real-world vision problems. Using learning in segmentation or recognition tasks has several advantages over classical model-based techniques. These include adaptivity to noise and changing environments, as well as in many cases, a simplified system generation procedure. Yet, learning from examples introduces a new challenge - getting a representative data set of examples from which to learn.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found