KDGAN: Knowledge Distillation with Generative Adversarial Networks

Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi

Neural Information Processing Systems 

Knowledge distillation (KD) aims to train a lightweight classifier suitable to provide accurate inference with constrained resources in multi-label learning. Instead of directly consuming feature-label pairs, the classifier is trained by a teacher, i.e., a high-capacity model whose training may be resource-hungry. The accuracy of the classifier trained this way is usually suboptimal because it is difficult to learn the true data distribution from the teacher. An alternative method is to adversarially train the classifier against a discriminator in a two-player game akin to generative adversarial networks (GAN), which can ensure the classifier to learn the true data distribution at the equilibrium of this game. However, it may take excessively long time for such a two-player game to reach equilibrium due to high-variance gradient updates.