Distribution Learning with Valid Outputs Beyond the Worst-Case
–Neural Information Processing Systems
Generative models at times produce "invalid" outputs, such as images with generation artifacts and unnatural sounds. Validity-constrained distribution learning attempts to address this problem by requiring that the learned distribution have a provably small fraction of its mass in invalid parts of space - something which standard loss minimization does not always ensure. To this end, a learner in this model can guide the learning via "validity queries", which allow it to ascertain the validity of individual examples. Prior work on this problem takes a worst-case stance, showing that proper learning requires an exponential number of validity queries, and demonstrating an improper algorithm which - while generating guarantees in a wide-range of settings - makes an atypical polynomial number of validity queries. In this work, we take a first step towards characterizing regimes where guaranteeing validity is easier than in the worst-case. We show that when the data distribution lies in the model class and the log-loss is minimized, the number of samples required to ensure validity has a weak dependence on the validity requirement. Additionally, we show that when the validity region belongs to a VC-class, a limited number of validity queries are often sufficient.
Neural Information Processing Systems
May-28-2025, 20:54:26 GMT
- Country:
- North America > United States > California (0.14)
- Genre:
- Research Report > Experimental Study (0.93)
- Technology: