Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Neural Information Processing Systems 

Local "belief propagation" rules of the sort proposed by Pearl [15] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have em(cid:173) pirically demonstrated good performance of "loopy belief propagation"(cid:173) using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannon-limit performance of "Turbo codes", whose decoding algorithm is equivalent to loopy belief propagation. Except for the case of graphs with a single loop, there has been little theo(cid:173) retical understanding of the performance of loopy propagation. Here we analyze belief propagation in networks with arbitrary topologies when the nodes in the graph describe jointly Gaussian random variables.