SHE: A Fast and Accurate Deep Neural Network for Encrypted Data

Qian Lou, Lei Jiang

Neural Information Processing Systems 

Homomorphic Encryption (HE) is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). Leveled-HE (LHE)-enabled Convolutional Neural Networks (LHECNNs) are proposed to implement MLaaS to avoid large bootstrapping overhead. However, prior LHECNNs have to pay significant computing overhead but achieve only low inference accuracy, due to their polynomial approximation activations and poolings. Stacking many polynomial approximation activation layers in a network greatly reduces inference accuracy, since the polynomial approximation activation errors lead to a low distortion of the output distribution of the next batch normalization layer. So the polynomial approximation activations and poolings have become the obstacle to a fast and accurate LHECNN model.