An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods Tamer Başar
–Neural Information Processing Systems
In this paper, we revisit and improve the convergence of policy gradient (PG), natural PG (NPG) methods, and their variance-reduced variants, under general smooth policy parametrizations. More specifically, with the Fisher information matrix of the policy being positive definite: i) we show that a state-of-the-art variance-reduced PG method, which has only been shown to converge to stationary points, converges to the globally optimal value up to some inherent function approximation error due to policy parametrization; ii) we show that NPG enjoys a lower sample complexity; iii) we propose SRVR-NPG, which incorporates variancereduction into the NPG update. Our improvements follow from an observation that the convergence of (variance-reduced) PG and NPG methods can improve each other: the stationary convergence analysis of PG can be applied to NPG as well, and the global convergence analysis of NPG can help to establish the global convergence of (variance-reduced) PG methods.
Neural Information Processing Systems
Jan-24-2025, 13:09:11 GMT