Globally Optimal On-line Learning Rules

Rattray, Magnus, Saad, David

Neural Information Processing Systems 

We present a method for determining the globally optimal online learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization error was considered. We maximize the total reduction in generalization error over the whole learning process and show how the resulting rule can significantly outperform the locally optimal rule. 1 Introduction We consider a learning scenario in which a feed-forward neural network model (the student) emulates an unknown mapping (the teacher), given a set of training examples produced by the teacher. The performance of the student network is typically measured by its generalization error, which is the expected error on an unseen example. The aim of training is to reduce the generalization error by adapting the student network's parameters appropriately. A common form of training is online learning, where training patterns are presented sequentially and independently to the network at each learning step.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found