Inferring Ground Truth from Subjective Labelling of Venus Images
Smyth, Padhraic, Fayyad, Usama M., Burl, Michael C., Perona, Pietro, Baldi, Pierre
–Neural Information Processing Systems
Instead of "ground truth" one may only have the subjective opinion(s) of one or more experts. For example, medical data or image data may be collected off-line and some time later a set of experts analyze the data and produce a set of class labels. The central problem is that of trying to infer the "ground truth" given the noisy subjective estimates of the experts. When one wishes to apply a supervised learning algorithm to the data, the problem is primarily twofold: (i) how to evaluate the relative performance of experts and algorithms, and (ii) how to train a pattern recognition system in the absence of absolute ground truth. In this paper we focus on problem (i), namely the performance evaluation issue, and in particular we discuss the application of a particular modelling technique to the problem of counting volcanoes on the surface of Venus.
Neural Information Processing Systems
Dec-31-1995