An Efficient Implementation of the Back-propagation Algorithm on the Connection Machine CM-2
Zhang, Xiru, McKenna, Michael, Mesirov, Jill P., Waltz, David L.
–Neural Information Processing Systems
In this paper, we present a novel implementation of the widely used Back-propagation neural net learning algorithm on the Connection Machine CM-2 - a general purpose, massively parallel computer with a hypercube topology. This implementation runs at about 180 million interconnections per second (IPS) on a 64K processor CM-2. The main interprocessor communication operation used is 2D nearest neighbor communication. The techniques developed here can be easily extended to implement other algorithms for layered neural nets on the CM-2, or on other massively parallel computers which have 2D or higher degree connections among their processors. 1 Introduction High-speed simulation of large artificial neural nets has become an important tool for solving real world problems and for studying the dynamic behavior of large populations of interconnected processing elements [3, 2]. This work is intended to provide such a simulation tool for a widely used neural net learning algorithm - the Back-propagation (BP) algorithm.[7] The hardware we have used is the Connection Machine CM-2.2
Neural Information Processing Systems
Dec-31-1990