Analytically deriving Partial Information Decomposition for affine systems of stable and convolution-closed distributions

Neural Information Processing Systems 

Bivariate partial information decomposition (PID) has emerged as a promising tool for analyzing interactions in complex systems, particularly in neuroscience. PID achieves this by decomposing the information that two sources (e.g., different brain regions) have about a target (e.g., a stimulus) into unique, redundant, and synergistic terms. However, the computation of PID remains a challenging problem, often involving optimization over distributions. While several works have been proposed to compute PID terms numerically, there is a surprising dearth of work on computing PID terms analytically. The only known analytical PID result is for jointly Gaussian distributions. In this work, we present two theoretical advances that enable analytical calculation of the PID terms for numerous wellknown distributions, including distributions relevant to neuroscience, such as Poisson, Cauchy, and binomial.