MURPHY: A Robot that Learns by Doing

Mel, Bartlett W.

Neural Information Processing Systems 

Current Focus Of Learning Research Most connectionist learning algorithms may be grouped into three general catagories, commonly referred to as supenJised, unsupenJised, and reinforcement learning. Supervised learning requires the explicit participation of an intelligent teacher, usually to provide the learning system with task-relevant input-output pairs (for two recent examples, see [1,2]). Unsupervised learning, exemplified by "clustering" algorithms, are generally concerned with detecting structure in a stream of input patterns [3,4,5,6,7]. In its final state, an unsupervised learning system will typically represent the discovered structure as a set of categories representing regions of the input space, or, more generally, as a mapping from the input space into a space of lower dimension that is somehow better suited to the task at hand. In reinforcement learning, a "critic" rewards or penalizes the learning system, until the system ultimately produces the correct output in response to a given input pattern [8]. It has seemed an inevitable tradeoff that systems needing to rapidly learn specific, behaviorally useful input-output mappings must necessarily do so under the auspices of an intelligent teacher with a ready supply of task-relevant training examples. This state of affairs has seemed somewhat paradoxical, since the processes of Rerceptual and cognitive development in human infants, for example, do not depend on the moment by moment intervention of a teacher of any sort. Learning by Doing The current work has been focused on a fourth type of learning algorithm, i.e. learning-bydoing, an approach that has been very little studied from either a connectionist perspective

Similar Docs  Excel Report  more

TitleSimilaritySource
None found