Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization

Neural Information Processing Systems 

Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality. It has been verified that utilizing diffusion policies can significantly improve the performance of RL algorithms in continuous control tasks by overcoming the limitations of unimodal policies, such as Gaussian policies. Furthermore, the multimodality of diffusion policies also shows the potential of providing the agent with enhanced exploration capabilities. However, existing works mainly focus on applying diffusion policies in offline RL, while their incorporation into online RL has been less investigated. The diffusion model's training objective, known as the variational lower bound, cannot be applied directly in online RL due to the unavailability of'good' samples (actions).