Fusion with Diffusion for Robust Visual Tracking Yu Zhou

Neural Information Processing Systems 

A weighted graph is used as an underlying structure of many algorithms like semisupervised learning and spectral clustering. If the edge weights are determined by a single similarity measure, then it hard if not impossible to capture all relevant aspects of similarity when using a single similarity measure. In particular, in the case of visual object matching it is beneficial to integrate different similarity measures that focus on different visual representations. In this paper, a novel approach to integrate multiple similarity measures is proposed. First pairs of similarity measures are combined with a diffusion process on their tensor product graph (TPG).