BIOSCAN-5M: A Multimodal Dataset for Insect Biodiversity, Scott C. Lowe 5, Pablo Millan Arias
–Neural Information Processing Systems
As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, this paper presents the BIOSCAN-5M Insect dataset to the machine learning community and establish several benchmark tasks. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens, and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, geographical, and size information. We propose three benchmark experiments to demonstrate the impact of the multi-modal data types on the classification and clustering accuracy. First, we pretrain a masked language model on the DNA barcode sequences of the BIOSCAN-5M dataset, and demonstrate the impact of using this large reference library on species-and genus-level classification performance. Second, we propose a zero-shot transfer learning task applied to images and DNA barcodes to cluster feature embeddings obtained from self-supervised learning, to investigate whether meaningful clusters can be derived from these representation embeddings.
Neural Information Processing Systems
May-29-2025, 06:33:14 GMT
- Country:
- North America
- Canada (0.67)
- United States (0.46)
- North America
- Genre:
- Research Report
- Experimental Study (0.93)
- New Finding (1.00)
- Research Report
- Industry:
- Government (0.67)
- Health & Medicine > Pharmaceuticals & Biotechnology (1.00)
- Technology: