Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning

Neural Information Processing Systems 

Deep neural networks (DNNs) have showcased their remarkable precision in approximating smooth functions. However, they suffer from the spectral bias, wherein DNNs typically exhibit a tendency to prioritize the learning of lower-frequency components of a function, struggling to effectively capture its high-frequency features. This paper is to address this issue. Notice that a function having only low frequency components may be well-represented by a shallow neural network (SNN), a network having only a few layers. By observing that composition of low frequency functions can effectively approximate a high-frequency function, we propose to learn a function containing high-frequency components by composing several SNNs, each of which learns certain low-frequency information from the given data. We implement the proposed idea by exploiting the multi-grade deep learning (MGDL) model, a recently introduced model that trains a DNN incrementally, grade by grade, a current grade learning from the residue of the previous grade only an SNN (with trainable parameters) composed with the SNNs (with fixed parameters) trained in the preceding grades as features.