Adaptive Layer Sparsity for Large Language Models via Activation Correlation Assessment Wei Li1, Mark Lee 1

Neural Information Processing Systems 

Large Language Models (LLMs) have revolutionized the field of natural language processing with their impressive capabilities. However, their enormous size presents challenges for deploying them in real-world applications. Traditional compression techniques, like pruning, often lead to suboptimal performance due to their uniform pruning ratios and lack of consideration for the varying importance of features across different layers. To address these limitations, we present a novel Adaptive Layer Sparsity (ALS) approach to optimize LLMs. Our approach consists of two key steps.