Inference by Reparameterization in Neural Population Codes

Neural Information Processing Systems 

Behavioral experiments on humans and animals suggest that the brain performs probabilistic inference to interpret its environment. Here we present a new generalpurpose, biologically-plausible neural implementation of approximate inference. The neural network represents uncertainty using Probabilistic Population Codes (PPCs), which are distributed neural representations that naturally encode probability distributions, and support marginalization and evidence integration in a biologically-plausible manner. By connecting multiple PPCs together as a probabilistic graphical model, we represent multivariate probability distributions. Approximate inference in graphical models can be accomplished by message-passing algorithms that disseminate local information throughout the graph. An attractive and often accurate example of such an algorithm is Loopy Belief Propagation (LBP), which uses local marginalization and evidence integration operations to perform approximate inference efficiently even for complex models.