Multi-Criteria Dimensionality Reduction with Applications to Fairness

Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie H. Morgenstern, Santosh Vempala

Neural Information Processing Systems 

Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multicriteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [2018] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized.