Wei Liu 1 Zhiying Deng 1 Jun Wang

Neural Information Processing Systems 

An important line of research in the field of explainability is to extract a small subset of crucial rationales from the full input. The most widely used criterion for rationale extraction is the maximum mutual information (MMI) criterion. However, in certain datasets, there are spurious features non-causally correlated with the label and also get high mutual information, complicating the loss landscape of MMI. Although some penalty-based methods have been developed to penalize the spurious features (e.g., invariance penalty, intervention penalty, etc) to help MMI work better, these are merely remedial measures. In the optimization objectives of these methods, spurious features are still distinguished from plain noise, which hinders the discovery of causal rationales.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found