Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling

Tengyang Xie, Yifei Ma, Yu-Xiang Wang

Neural Information Processing Systems 

Motivated by the many real-world applications of reinforcement learning (RL) that require safe-policy iterations, we consider the problem of off-policy evaluation (OPE) -- the problem of evaluating a new policy using the historical data obtained by different behavior policies -- under the model of nonstationary episodic Markov Decision Processes (MDP) with a long horizon and a large action space. Existing importance sampling (IS) methods often suffer from large variance that depends exponentially on the RL horizon H. To solve this problem, we consider a marginalized importance sampling (MIS) estimator that recursively estimates the state marginal distribution for the target policy at every step.