Bayesian Image Super-Resolution
Tipping, Michael E., Bishop, Christopher M.
–Neural Information Processing Systems
The extraction of a single high-quality image from a set of lowresolution images is an important problem which arises in fields such as remote sensing, surveillance, medical imaging and the extraction of still images from video. Typical approaches are based on the use of cross-correlation to register the images followed by the inversion of the transformation from the unknown high resolution image to the observed low resolution images, using regularization to resolve the ill-posed nature of the inversion process. In this paper we develop a Bayesian treatment of the super-resolution problem in which the likelihood function for the image registration parameters is based on a marginalization over the unknown high-resolution image. This approach allows us to estimate the unknown point spread function, and is rendered tractable through the introduction of a Gaussian process prior over images. Results indicate a significant improvement over techniques based on MAP (maximum a-posteriori) point optimization of the high resolution image and associated registration parameters. 1 Introduction The task in super-resolution is to combine a set of low resolution images of the same scene in order to obtain a single image of higher resolution. Provided the individual low resolution images have sub-pixel displacements relative to each other, it is possible to extract high frequency details of the scene well beyond the Nyquist limit of the individual source images.
Neural Information Processing Systems
Dec-31-2003