When to Intervene: Learning Optimal Intervention Policies for Critical Events

Neural Information Processing Systems 

Providing a timely intervention before the onset of a critical event, such as a system failure, is of importance in many industrial settings. Before the onset of the critical event, systems typically exhibit behavioral changes which often manifest as stochastic co-variate observations which may be leveraged to trigger intervention. In this paper, for the first time, we formulate the problem of finding an optimally timed intervention (OTI) policy as minimizing the expected residual time to event, subject to a constraint on the probability of missing the event. Existing machine learning approaches to intervention on critical events focus on predicting event occurrence within a pre-defined window (a classification problem) or predicting time-to-event (a regression problem). Interventions are then triggered by setting model thresholds.