Analog VLSI Implementation of Multi-dimensional Gradient Descent
Kirk, David B., Kerns, Douglas, Fleischer, Kurt, Barr, Alan H.
–Neural Information Processing Systems
The implementation uses noise injection and multiplicative correlation to estimate derivatives, as in [Anderson, Kerns 92]. One intended application of this technique is setting circuit parameters on-chip automatically, rather than manually [Kirk 91]. Gradient descent optimization may be used to adjust synapse weights for a backpropagation or other on-chip learning implementation. The approach combines the features of continuous multidimensional gradient descent and the potential for an annealing style of optimization. We present data measured from our analog VLSI implementation. 1 Introduction This work is similar to [Anderson, Kerns 92], but represents two advances. First, we describe the extension of the technique to multiple dimensions. Second, we demonstrate an implementation of the multidimensional technique in analog VLSI, and provide results measured from the chip. Unlike previous work using noise sources in adaptive systems, we use the noise as a means of estimating the gradient of a function f(y), rather than performing an annealing process [Alspector 88]. We also estimate gr-;:dients continuously in position and time, in contrast to [Umminger 89] and [J abri 91], which utilize discrete position gradient estimates.
Neural Information Processing Systems
Dec-31-1993
- Country:
- North America > United States > California (0.49)
- Industry:
- Semiconductors & Electronics (0.87)
- Technology: