Offline Reinforcement Learning with Reverse Model-based Imagination

Neural Information Processing Systems 

In offline reinforcement learning (offline RL), one of the main challenges is to deal with the distributional shift between the learning policy and the given dataset. To address this problem, recent offline RL methods attempt to introduce conservatism bias to encourage learning in high-confidence areas. Model-free approaches directly encode such bias into policy or value function learning using conservative regularizations or special network structures, but their constrained policy search limits the generalization beyond the offline dataset. Model-based approaches learn forward dynamics models with conservatism quantifications and then generate imaginary trajectories to extend the offline datasets. However, due to limited samples in offline datasets, conservatism quantifications often suffer from overgeneralization in out-of-support regions.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found