On Optimal Learning Under Targeted Data Poisoning
–Neural Information Processing Systems
Consider the task of learning a hypothesis class \mathcal{H} in the presence of an adversary that can replace up to an \eta fraction of the examples in the training set with arbitrary adversarial examples. The adversary aims to fail the learner on a particular target test point x which is \emph{known} to the adversary but not to the learner. In this work we aim to characterize the smallest achievable error \epsilon \epsilon(\eta) by the learner in the presence of such an adversary in both realizable and agnostic settings. Remarkably, we show that the upper bound can be attained by a deterministic learner. In the agnostic setting we reveal a more elaborate landscape: we devise a deterministic learner with a multiplicative regret guarantee of \epsilon \leq C\cdot\mathtt{OPT} O(\mathtt{VC}(\mathcal{H})\cdot \eta), where C 1 is a universal numerical constant.
Neural Information Processing Systems
Jan-18-2025, 20:22:27 GMT
- Technology: