Approximate Bayesian Inference for a Mechanistic Model of Vesicle Release at a Ribbon Synapse

Neural Information Processing Systems 

The inherent noise of neural systems makes it difficult to construct models which accurately capture experimental measurements of their activity. While much research has been done on how to efficiently model neural activity with descriptive models such as linear-nonlinear-models (LN), Bayesian inference for mechanistic models has received considerably less attention. One reason for this is that these models typically lead to intractable likelihoods and thus make parameter inference difficult. Here, we develop an approximate Bayesian inference scheme for a fully stochastic, biophysically inspired model of glutamate release at the ribbon synapse, a highly specialized synapse found in different sensory systems. The model translates known structural features of the ribbon synapse into a set of stochastically coupled equations.