Learning Sparse Codes with a Mixture-of-Gaussians Prior

Olshausen, Bruno A., Millman, K. Jarrod

Neural Information Processing Systems 

We describe a method for learning an overcomplete set of basis functions for the purpose of modeling sparse structure in images. The sparsity of the basis function coefficients is modeled with a mixture-of-Gaussians distribution. One Gaussian captures nonactive coefficients with a small-variance distribution centered at zero, while one or more other Gaussians capture active coefficients with a large-variance distribution. We show that when the prior is in such a form, there exist efficient methods for learning the basis functions as well as the parameters of the prior. The performance of the algorithm is demonstrated on a number of test cases and also on natural images.