Inferring Networks From Random Walk-Based Node Similarities

Jeremy Hoskins, Cameron Musco, Christopher Musco, Babis Tsourakakis

Neural Information Processing Systems 

Digital presence in the world of online social media entails significant privacy risks [31, 56]. In this work we consider a privacy threat to a social network in which an attacker has access to a subset of random walk-based node similarities, such as effective resistances (i.e., commute times) or personalized PageRank scores. Using these similarities, the attacker seeks to infer as much information as possible about the network, including unknown pairwise node similarities and edges. For the effective resistance metric, we show that with just a small subset of measurements, one can learn a large fraction of edges in a social network. We also show that it is possible to learn a graph which accurately matches the underlying network on all other effective resistances.