Computing with Infinite Networks

Williams, Christopher K. I.

Neural Information Processing Systems 

For neural networks with a wide class of weight-priors, it can be shown that in the limit of an infinite number of hidden units the prior over functions tends to a Gaussian process. In this paper analytic forms are derived for the covariance function of the Gaussian processes corresponding to networks with sigmoidal and Gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units, and shows that, somewhat paradoxically, it may be easier to compute with infinite networks than finite ones. 1 Introduction To someone training a neural network by maximizing the likelihood of a finite amount of data it makes no sense to use a network with an infinite number of hidden units; the network will "overfit" the data and so will be expected to generalize poorly. However, the idea of selecting the network size depending on the amount of training data makes little sense to a Bayesian; a model should be chosen that reflects the understanding of the problem, and then application of Bayes' theorem allows inference to be carried out (at least in theory) after the data is observed. In the Bayesian treatment of neural networks, a question immediately arises as to how many hidden units are believed to be appropriate for a task. Neal (1996) has argued compellingly that for real-world problems, there is no reason to believe that neural network models should be limited to nets containing only a "small" number of hidden units. He has shown that it is sensible to consider a limit where the number of hidden units in a net tends to infinity, and that good predictions can be obtained from such models using the Bayesian machinery. He has also shown that for fixed hyperparameters, a large class of neural network models will converge to a Gaussian process prior over functions in the limit of an infinite number of hidden units.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found