Efficient Resources Allocation for Markov Decision Processes
–Neural Information Processing Systems
Assume that we model a complex decision-making problem under uncertainty by a finite MDP. Because of the limited resources used, the parameters of the MDP (transition probabilities and rewards) are uncertain: we assume that we only know a belief state over their possible values. IT we select the most probable values of the parameters, we can build a MDP and solve it to deduce the corresponding optimal policy. However, because of the uncertainty over the true parameters, this policy may not be the one that maximizes the expected cumulative rewards of the true (but partially unknown) decision-making problem. We can nevertheless use sampling techniques to estimate the expected loss of using this policy.
Neural Information Processing Systems
Dec-31-2002