Graph Agreement Models for Semi-Supervised Learning

Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Emmanouil Platanios, Sujith Ravi, Andrew Tomkins

Neural Information Processing Systems 

Graph-based algorithms are among the most successful paradigms for solving semisupervised learning tasks. Recent work on graph convolutional networks and neural graph learning methods has successfully combined the expressiveness of neural networks with graph structures. We propose a technique that, when applied to these methods, achieves state-of-the-art results on semi-supervised learning datasets. Traditional graph-based algorithms, such as label propagation, were designed with the underlying assumption that the label of a node can be imputed from that of the neighboring nodes. However, real-world graphs are either noisy or have edges that do not correspond to label agreement.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found