Learning Factored Representations for Partially Observable Markov Decision Processes
–Neural Information Processing Systems
The problem of reinforcement learning in a non-Markov environment is explored using a dynamic Bayesian network, where conditional independence assumptions between random variables are compactly represented by network parameters. The parameters are learned online, and approximations are used to perform inference and to compute the optimal value function. The relative effects of inference and value function approximations on the quality of the final policy are investigated, by learning to solve a moderately difficult driving task. The two value function approximations, linear and quadratic, were found to perform similarly, but the quadratic model was more sensitive to initialization. Both performed below the level of human performance on the task. The dynamic Bayesian network performed comparably to a model using a localist hidden state representation, while requiring exponentially fewer parameters.
Neural Information Processing Systems
Dec-31-2000