Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes

Jun Yang, Shengyang Sun, Daniel M. Roy

Neural Information Processing Systems 

The developments of Rademacher complexity and PAC-Bayesian theory have been largely independent. One exception is the PAC-Bayes theorem of Kakade, Sridharan, and Tewari [21], which is established via Rademacher complexity theory by viewing Gibbs classifiers as linear operators. The goal of this paper is to extend this bridge between Rademacher complexity and state-of-the-art PAC-Bayesian theory. We first demonstrate that one can match the fast rate of Catoni's PAC-Bayes bounds [8] using shifted Rademacher processes [27, 43, 44]. We then derive a new fast-rate PAC-Bayes bound in terms of the "flatness" of the empirical risk surface on which the posterior concentrates. Our analysis establishes a new framework for deriving fast-rate PAC-Bayes bounds and yields new insights on PAC-Bayesian theory.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found