CosAE: Learnable Fourier Series for Image Restoration

Neural Information Processing Systems 

In this paper, we introduce Cosine Autoencoder (CosAE), a novel, generic Autoencoder that seamlessly leverages the classic Fourier series with a feed-forward neural network. CosAE represents an input image as a series of 2D Cosine time series, each defined by a tuple of learnable frequency and Fourier coefficients. This method stands in contrast to a conventional Autoencoder that often sacrifices detail in their reduced-resolution bottleneck latent spaces.