Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models

Hughes, Michael C., Stephenson, William T., Sudderth, Erik

Neural Information Processing Systems 

Bayesian nonparametric hidden Markov models are typically learned via fixed truncations of the infinite state space or local Monte Carlo proposals that make small changes to the state space. We develop an inference algorithm for the sticky hierarchical Dirichlet process hidden Markov model that scales to big datasets by processing a few sequences at a time yet allows rapid adaptation of the state space cardinality. Unlike previous point-estimate methods, our novel variational bound penalizes redundant or irrelevant states and thus enables optimization of the state space. Our birth proposals use observed data statistics to create useful new states that escape local optima. Merge and delete proposals remove ineffective states to yield simpler models with more affordable future computations.