The Generalisation Cost of RAMnets
Rohwer, Richard, Morciniec, Michal
–Neural Information Processing Systems
We follow a similar approach to (Zhu & Rohwer, to appear 1996) in using a Gaussian process to define a prior over the space of functions, so that the expected generalisation cost under the posterior can be determined. The optimal model is defined in terms of the restriction of this posterior to the subspace defined by the model. The optimum is easily determined for linear models over a set of basis functions. We go on to compute the generalisation cost (with an error bar) for all models of this class, which we demonstrate to include the RAMnets.
Neural Information Processing Systems
Dec-31-1997