Condotta

AAAI Conferences 

This paper tackles the problem of evaluating the degree of inconsistency in spatial and temporal qualitative reasoning. We first introduce postulates to propose a formal framework for measuring inconsistency in this context. Then, we provide two inconsistency measures that can be useful in various AI applications. The first one is based on the number of constraints that we need to relax to get a consistent qualitative constraint network. The second inconsistency measure is based on variable restrictions to restore consistency. It is defined from the minimum number of variables that we need to ignore to recover consistency. We show that our proposed measures satisfy required postulates and other appropriate properties. Finally, we discuss the impact of our inconsistency measures on belief merging in qualitative reasoning.