Stochastic Optimization for Large-scale Optimal Transport

Neural Information Processing Systems 

Optimal transport (OT) defines a powerful framework to compare probability distributions in a geometrically faithful way. However, the practical impact of OT is still limited because of its computational burden. We propose a new class of stochastic optimization algorithms to cope with large-scale OT problems. These methods can handle arbitrary distributions (either discrete or continuous) as long as one is able to draw samples from them, which is the typical setup in highdimensional learning problems.