Information Diffusion Kernels

Lebanon, Guy, Lafferty, John D.

Neural Information Processing Systems 

A new family of kernels for statistical learning is introduced that exploits the geometric structure of statistical models. Based on the heat equation on the Riemannian manifold defined by the Fisher information metric, information diffusion kernels generalize the Gaussian kernel of Euclidean space, and provide a natural way of combining generative statistical modeling with nonparametric discriminative learning. As a special case, the kernels give a new approach to applying kernel-based learning algorithms to discrete data. Bounds on covering numbers for the new kernels are proved using spectral theory in differential geometry, and experimental results are presented for text classification.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found