Structured flexibility in recurrent neural networks via neuromodulation

Neural Information Processing Systems 

A core aim in theoretical and systems neuroscience is to develop models that help us better understand biological intelligence. Such models range broadly in both complexity and biological plausibility. One widely-adopted example is task-optimized recurrent neural networks (RNNs), which have been used to generate hypotheses about how the brain's neural dynamics may organize to accomplish tasks. However, task-optimized RNNs typically have a fixed weight matrix representing the synaptic connectivity between neurons. From decades of neuroscience research, we know that synaptic weights are constantly changing, controlled in part by chemicals such as neuromodulators. In this work we explore the computational implications of synaptic gain scaling, a form of neuromodulation, using task-optimized lowrank RNNs.