Learning Segmentation by Random Walks
–Neural Information Processing Systems
We present a new view of image segmentation by pairwise similarities. We interpret the similarities as edge flows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This interpretation shows that spectral methods for clustering and segmentation have a probabilistic foundation. In particular, we prove that the Normalized Cut method arises naturally from our framework. Finally, the framework provides a principled method for learning the similarity function as a combination of features.
Neural Information Processing Systems
Dec-31-2001