Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula

Neural Information Processing Systems 

Modern large scale datasets are often plagued with missing entries. For tabular data with missing values, a flurry of imputation algorithms solve for a complete matrix which minimizes some penalized reconstruction error. However, almost none of them can estimate the uncertainty of its imputations. This paper proposes a probabilistic and scalable framework for missing value imputation with quantified uncertainty. Our model, the Low Rank Gaussian Copula, augments a standard probabilistic model, Probabilistic Principal Component Analysis, with marginal transformations for each column that allow the model to better match the distribution of the data. It naturally handles Boolean, ordinal, and real-valued observations and quantifies the uncertainty in each imputation.