Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes

Neural Information Processing Systems 

Self-supervised depth estimators have recently shown results comparable to the supervised methods on the challenging single image depth estimation (SIDE) task, by exploiting the geometrical relations between target and reference views in the training data. However, previous methods usually learn forward or backward image synthesis, but not depth estimation, as they cannot effectively neglect occlusions between the target and the reference images. Previous works rely on rigid photometric assumptions or on the SIDE network to infer depth and occlusions, resulting in limited performance. On the other hand, we propose a method to "Forget About the LiDAR" (FAL), with Mirrored Exponential Disparity (MED) probability volumes for the training of monocular depth estimators from stereo images. Our MED representation allows us to obtain geometrically inspired occlusion maps with our novel Mirrored Occlusion Module (MOM), which does not impose a learning burden on our FAL-net.