Approximately Efficient Online Mechanism Design

Neural Information Processing Systems 

Online mechanism design (OMD) addresses the problem of sequential decision making in a stochastic environment with multiple self-interested agents. The goal in OMD is to make value-maximizing decisions despite this self-interest. In previous work we presented a Markov decision pro- cess (MDP)-based approach to OMD in large-scale problem domains. In practice the underlying MDP needed to solve OMD is too large and hence the mechanism must consider approximations. This raises the pos- sibility that agents may be able to exploit the approximation for selfish gain.