Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes Greg Yang
–Neural Information Processing Systems
Wide neural networks with random weights and biases are Gaussian processes, as originally observed by Neal (1995) and more recently by Lee et al. (2018) and Matthews et al. (2018) for deep fully-connected networks, as well as by Novak et al. (2019) and Garriga-Alonso et al. (2019) for deep convolutional networks. We show that this Neural Network-Gaussian Process correspondence surprisingly extends to all modern feedforward or recurrent neural networks composed of multilayer perceptron, RNNs (e.g. LSTMs, GRUs), (nD or graph) convolution, pooling, skip connection, attention, batch normalization, and/or layer normalization. More generally, we introduce a language for expressing neural network computations, and our result encompasses all such expressible neural networks. This work serves as a tutorial on the tensor programs technique formulated in Yang (2019) and elucidates the Gaussian Process results obtained there.
Neural Information Processing Systems
Jan-24-2025, 02:51:51 GMT
- Genre:
- Instructional Material > Course Syllabus & Notes (0.54)
- Research Report > New Finding (0.34)
- Technology: